

Software programming Guide V1.4 www.eeti.com 0

TouchKit
Software Programming Guide

Version 1.5

Software programming Guide V1.4 www.eeti.com 1

Contents

1.1 Protocol

1.1.1 Diagnostics Packet

1.1.2 Report Packet

1.2 Interface

 RS232 Interface

1.3 Packet Parser Sample Code

1.4 2 Points Calibration for Position Decoding

1.5 Multi-Gesture Report

Software programming Guide V1.4 www.eeti.com 2

Chapter 1. Introduction

EETI provides a full range of controllers designed to optimize the performance of
analog resistive touch panels. The controller communicates with the PC system
directly through RS232, PS/2, USB port and even I2C. In recent years, portable
devices become popular, and I2C transaction is the best way to communicate with
these portable devices, like PDA, eBook, Mira, etc.

EETI¡s superior design combines accuracy, sensitivity and speed to reach the
outstanding touch performance and ease of use. The drivers emulate the mouse input
and right button function, and support a variety of operation systems, including DOS,
Windows 98, Windows NT4, Windows 2000, Windows Me, Windows XP, Windows
CE.net, iMac, Linux RedHat and Mandrake Linux.

However some special designs, our honor customers have to develop their own
programs communicating with the touch panel controller firmware directly. In chapter
1 of this application note, firstly the needed protocols are described. Then special
notices of programming RS232 is expressed. At the end, the sample code of parsing
the protocols and the two points calibration conversion formulas are listed.

Software programming Guide V1.4 www.eeti.com 3

Chapter 2 Programming Guide of Using TouchKit Controller Board

.

1.1 Protocol

All TouchKit controllers including RS232 4-wire use the protocols. And the protocols

can be classified into 2 groups: Diagnostics Packet and Report Packet.

1.1.1 Diagnostics Packet

These packets are issued from the host for querying some device information.
The controller firmware will report the corresponding data to the host. The packet
format is as follows:

0x0A LengthInByte + 1 Command Response
 1 Byte 1 Byte 1 Byte LengthInByte Bytes

The maximum packet size is 16 bytes. The first byte is Start of Packet as 0X0A.
The second byte is the length of Response. The third byte is the issued command
and the last part (length is defined in second byte) is the response from controller
firmware.

1. Check active : this packet is to check if the device is working properly.

Host issues
0x0A 1 ¡A¡
Device responds when active
0x0A 1 ¡A¡

2. Get firmware version
Host issues
0x0A 1 ¡D¡
Controller firmware responds
0x0A Length ¡D¡ Response

 The response is an ASCII string, such as ¡0.99¡

Software programming Guide V1.4 www.eeti.com 4

3. Get type
This packet is to request the controller type.

Host issues
0x0A 1 ¡E¡
Controller firmware responds
0x0A Length ¡E¡ Response

1.1.2 Report Packet
Touchkit USB HID Touchscreen controllers support Microsoft HID touch digitizer.
By default, Touchkit HID compatible controller report with HID format for
coordination data according to the HID report descriptor it reported to Host
system. In addition, Touchkit serial RS232 controllers support emulation modes.
Serial controller¡s report format depends on the format of command sets it
receives from Host. By default, it reports with non-emulated packet format as
below. To make sure the controllers to report with the below format, the host
driver should issue any one of diagnostics packet data to controller. For
example, host driver may send a ¡Check Active¡(0x0A, 1, ¡A¡) packet data to
controller to make it report with below report format.

Each report packet may contain 5 or 6 bytes as below:

 MSB LSB
1 Z M 0 0 AD1 AD0 Status
0 A13 A12 A11 A10 A9 A8 A7
0 A6 A5 A4 A3 A2 A1 A0
0 B13 B12 B11 B10 B9 B8 B7
0 B6 B5 B4 B3 B2 B1 B0
0 P6 P5 P4 P3 P2 P1 P0

Byte0: Byte0 is the header of the point packet. It contains below point
 Information
 Z : pressure bit. Touchkit controller SAW technology may report with

pressure information.
 Z=0 means no pressure information
 Z=1 means Byte5 is pressure information.
 M: Player ID. Touchkit multipler controller report player ID information
 M=0 means no player ID information

Byte0

Byte1

Byte2

Byte3

Byte4

Byte5

Software programming Guide V1.4 www.eeti.com 5

 M=1 means Byte5 is player ID
 Status: touch down status.
 Status = 1 means touch down
 Status = 0 means lift off point
Byte1~Byte4:
 AD1,AD0: resolution information of the current point coordination.
 AD1:AD0 = 0:0 means the coordination resolution is 11 bits
 AD1:AD0 = 0:1 means the coordination resolution is 12 bits
 AD1:AD0 = 1:0 means the coordination resolution is 13 bits
 AD1:AD0 = 1:1 means the coordination resolution is 14 bits

indicates the touch status: 1 for touch down and 0 for touch up.
A10/A11/A12/A13 ¡ A0: 11/12/13/14 bits of 1st direction raw data
B10/B11/B12/B13 ¡ B0: 11/12/13/14 bits of 2nd direction raw data

 Please be aware that A and B just represent 2 resolution directions

of the touch panel.

 Byte5: Pressure or player ID

 The point packet has 6th byte only when Z=1 or M=1. Otherwise, the

 point packet has 5 bytes only. If Z=1, this byte is pressure value. If

 M=1, this byte is player ID.

Software programming Guide V1.4 www.eeti.com 6

1.2 Interface

RS232 Interface
If RS232 controller is used, please specify the following information in the driver

programs:
 Baud rate：9600 bps.
 Data bits：8
 Stop bit：1
 Parity check：NONE.

1.3 Packet Parser Sample Code

#define MAX_BUFFER 1024

#define MOUSE_PACKET_LEN 5

#define MAX_CMD_LEN 16

#define POLLING_BUFFER_SIZE 3

unsigned __stdcall PortThreadRoutine(LPVOID pContext)

{

 CPort *pPort = (CPort *) pContext;

 CHAR pBuffer[MAX_BUFFER];

 CHAR pMsgBuffer[MAX_BUFFER];

 DWORD dwRead = 0;

 DWORD dwCnts = 0;

 BOOL bPointPacket = FALSE ;

 BOOL bCmdPacket = FALSE;

 DWORD dwCmdPacketLen;

 UCHAR ucChar;

 INT i;

 while(TRUE)

 {

 if(WAIT_OBJECT_0 == ::WaitForSingleObject(pPort->m_hStopEvent, 0))

 {

 return 100;

Software programming Guide V1.4 www.eeti.com 7

 }

 // read packet from COM port or USB port

 if (pPort->Read(pBuffer, POLLING_BUFFER_SIZE, &dwRead, pPort->m_hReadEvent))

 { // parse the packet

 for(i = 0; i< (INT)dwRead; i++)

 {

 ucChar = pBuffer[i] ;

 if((pBuffer[i] & 0xF0) == _SYNCBIT) && !bCmdPacket)

 {

 dwCnts = 0;

 pMsgBuffer[dwCnts] = pBuffer[i];

 bPointPacket = TRUE;

 dwCnts++;

 continue;

 }

 else if(_SOP == ucChar && !bPointPacket && !bCmdPacket)

 {

 bCmdPacket = TRUE;

 dwCmdPacketLen = (DWORD)-1;

 bPointPacket = FALSE;

 continue;

 }

 else if(bCmdPacket)

 {

 if((DWORD)-1 == dwCmdPacketLen)

 {

 dwCmdPacketLen = (DWORD)pBuffer[i];

 dwCnts = 0;

 if(dwCmdPacketLen > MAX_CMD_LEN)

 dwCmdPacketLen = MAX_CMD_LEN;

 continue;

 }

 pMsgBuffer[dwCnts] = pBuffer[i];

 dwCnts++;

 if(dwCmdPacketLen == dwCnts)

 {

 dwCmdPacketLen = 0;

 pMsgBuffer[dwCnts] = 0;

 dwCnts++;

Software programming Guide V1.4 www.eeti.com 8

 // Here, a completely Cmd packet received !!!

 // Do what you want to do!

 // For instance,

 // pPort->DisPatchMessage(pMsgBuffer, dwCnts);

 dwCnts = 0;

 bCmdPacket = FALSE;

 continue;

 }

 continue;

 }

 if(bPointPacket)

 {

 pMsgBuffer[dwCnts] = pBuffer[i];

 dwCnts++;

 if(MOUSE_PACKET_LEN == dwCnts)

 {

 // Here, a completely point packet received !!!

 // Do what you want to do!

 // For instance,

 //pPort->DisPatchMessage(pMsgBuffer, dwCnts);

 dwCnts = 0;

 bPointPacket = FALSE;

 }

 continue;

 }

 }

 }

 }

}

Software programming Guide V1.4 www.eeti.com 9

1.4 2 Points Calibration for Position Decoding
System software developer can develop their own simple calibration tool based on

below sample. However, Touchkit Saturn Resistive and ESC7000 Capacitive

controller also support advanced 4, 9, and 25 points calibration. Please reference to

the document ¡EETI Calibration Design Guide¡.

1. LL and UR are the calibration points of touch panel, the points are setup at

LL = (1/8 screen X, 1/8 screen Y) = (256 , 256) ADC ;

UR = (7/8 screen X, 7/8 screen Y) = (1791 , 1791) ADC

2. When we do the calibration, press on these two points, then we get the row data

LL ¡and UR¡:

LL¡ = (LLX, LLY) ; UR¡ = (URX, URY)

3. After the calibration, when you touch the panel and get another row data X and Y.

The new position after calibration are X¡ and Y¡ , and the conversion formulas are

as follows:

X¡ = * 1536 + 256

Y¡ = * 1536 + 256

(0 , 0) ADC (2047 , 0) ADC

(2047 , 2047) ADC (0 , 2047) ADC

UR =(1791 , 1791) ADC

LL = (256 , 256) ADC

X ¡ LLX

URX ¡ LLX

Y ¡ LLY

URY ¡ LLY

Software programming Guide V1.4 www.eeti.com 10

1.3 Multi-Gesture Report

Touchkit SAW and IR controller support rectangle based multi-gesture report.
Software application program can generate some gesture events according to the
rectangle report from the controller and driver. The report format is as below

0x0A + 10 + ¡4¡ + TouchState +X_LL(2 bytes) + Y_LL(2bytes) + X_UR(2bytes) +
Y_UR(2bytes)

TouchState = 0, lift off

 = 1 , touch down

